QCut Subsequent Wires

QCut Subsequent Wires#

import QCut as ck
from QCut import cut
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
from qiskit_aer.primitives import Estimator
#define initial circuit

circuit = QuantumCircuit(4)
circuit.h(0)
circuit.cx(0,1)
circuit.cx(0,2)
circuit.cx(1,3)
circuit.cx(2,3)

circuit.measure_all()

circuit.draw("mpl")
../_images/edca7e752eb6475c0eebc97cfc86fa91582b5ff51bf3c97cf3aeee5b165f99e3.png
#insert cuts

cut_circuit = QuantumCircuit(4)
cut_circuit.h(0)
cut_circuit.cx(0,1)
cut_circuit.cx(0,2)
cut_circuit.append(cut, [1])
cut_circuit.append(cut, [2])
cut_circuit.cx(1,2)
cut_circuit.cx(2,3)

cut_circuit.draw("mpl")
../_images/7bd74253328575fcb4322c39610123007f089bbd02e7731223f53c5ce07fdbcf.png
#find cut locations and separate into subcircuits

cut_locations, subcircuits, map_qubit = ck.get_locations_and_subcircuits(cut_circuit)
subcircuits[0].draw("mpl")
../_images/89490bf4f933d1beffd257442692ade72770d8a658d1820f5f521574bb98a7fe.png
subcircuits[1].draw("mpl")
../_images/7cf72320d374328ba7aa1c73383a7c4e7634bfa2d841a3a939ae556b39a707c6.png
#insert qpd operations to get the 8^n experiment circuits, where n is the number of cuts made
#also returns coefficients used for reconstructing the expectation values
#and locations of identity basis measurements that get added with post processing

experiment_circuits, coefficients, id_meas = ck.get_experiment_circuits(subcircuits, cut_locations)
#define backend

backend = AerSimulator()
#run experiment circuits
#run_experiments() also post processes the results

results = ck.run_experiments(experiment_circuits, cut_locations, id_meas, backend=backend)
#define observables to calculate expectation values for
observables = [0,1,2,3, [0,2], [0,1,3]]

#get the exact expectation values with ideal simulator
expectation_values = ck.estimate_expectation_values(results, coefficients, cut_locations, observables, map_qubit)
#transform observables into a PauliList for the Qiskit Estimator
paulilist_observables = ck.get_pauli_list(observables, circuit.num_qubits)

#get the exact expectation values with ideal simulator
estimator = Estimator(run_options={"shots": None}, approximation=True)
exact_expvals = (
    estimator.run([circuit] * len(paulilist_observables),  # noqa: PD011
                  list(paulilist_observables)).result().values
)
import numpy as np

#set numpy print options
np.set_printoptions(formatter={"float": lambda x: f"{x:0.6f}"})
expectation_values = np.array(expectation_values).astype(float)

#compare QCut to Estimator
print(f"QCut circuit knitting expectation values:{np.array(expectation_values)}")
print(f"Exact expectation values with ideal simulator :{np.array(exact_expvals)}")
QCut circuit knitting expectation values:[0.987290 0.987290 0.050727 -0.018188 0.003919 -0.018188]
Exact expectation values with ideal simulator :[1.000000 0.000000 0.000000 0.000000 0.000000 1.000000]